IB Mathematics - Questionbank

2.2 Functions & Inverses

Question 1

The function `f`is defined by `f(x)=(4x+1)/(x+4)`, where `x ∈R, x≠-4.`

(a) For the graph of  `f`

      (i) Write down the equation of the vertical asymptote;

      (ii) Find the equation of the horizontal asymptote.

(b) (i) Find `f^(-1) (x).`

      (ii) Using an algebraic approach, show that the graph of `f^(-1)` is obtained by a reflection of the graph of `f` in the `y`-axis followed by a reflection in the `x`-axis.

The graphs of `f`and `f^(-1)` intersect at `x=p` and `x=q`, where `p.

(c) (i) Find the value of `p`and the value of `q`.

      (ii) Hence, find the area enclosed by the graph of `f`and the graph of `f^(-1)`

 

 

Mark as Complete

Mark Scheme

Question 2

The functions `f` and `g` are defined by `f(x)=2x-x^3` and `g(x)=tanx`.

(a) Find `(f∘g)(x)`

(b) On the following grid, sketch the graph of `y=(f∘g)(x)` for `-1≤x≤1`. 

      Write down and clearly label the coordinates of any local maximum or minimum points.

 

 

Mark as Complete

Mark Scheme

Question 3

Consider the function `h(x)=√(4x-2)`, for `x≥1/2`.

(a) For the graph of  

     (i) Find `h^(-1) (x)`, the inverse of `h(x)`, and state its domain.

     (ii) Write down the range of `h^(-1) (x)`.

(b) The graph of `h` intersects the graph of  `h^(-1)` at two points. Find the `x`-coordinates of these two points.

(c) Find the area enclosed by the graph of `h` and the graph of `h^(-1)`.

(d) Find `h^' (x)`.

(e) Find the value of `x` for which the graph of  `h` and the graph of  `h^(-1)` have the same gradient.

Mark as Complete

Mark Scheme

Question 4

Let `f(x)=ln(x+5)+ln2`, for `x>-5`.

(a) Find `f^(-1) (x)`.

Let `g(x)=e^x`

(b) Find `(g∘f)(x)`, giving your answer in the form `ax+b`, where `a,b∈Z`.

Mark as Complete

Mark Scheme

Question 5

Let `f(x)=2x^3+3` and `g(x)=e^3x-2`

(a) (i) Find `g(0)`.

     (ii) Find `(f∘g)(0)`

(b) Find `f^(-1) (x)`

Mark as Complete

Mark Scheme

Question 6

Let `f(x)=7-2x` and `g(x)=x+3`.

(a) Find `(g∘f)(x)`

(b) Write down `g^(-1) (x)`.

(c) Find `(f∘g^(-1))(5)`

Mark as Complete

Mark Scheme

Question 7

Let `f(x)=2x-1` and `g(x)=3x^2+2`.

(a) Find `f^(-1) (x)`.

(b) Find `(f∘g)(1)`.

 

Mark as Complete

Mark Scheme

Question 8

Let `f(x)=4/(x+2), x≠-2` and `g(x)=x-1`

If `h=g∘f`, find

(a) `h(x)`

(b) `h^(-1) (x)`, where `h^(-1)` is the inverse of `h`

Mark as Complete

Mark Scheme

Question 9

Consider the functions given below.

                                                       `f(x)=2x+3`

                                                       `g(x)=1/x, x≠0`

(a) (i) Find  `(g∘f)(x)` and write down the domain of the function.

     (ii) Find `(f∘g)(x)` and write down the domain of the function.

(b) Find the coordinates of the point where the graph of `y=f(x)` and the graph of `y=(g^(-1)∘f∘g)(x)`intersect.

Mark as Complete

Mark Scheme

Question 10

Consider the following functions:

                                                   `f(x)=(2x^2+3)/75, x≥0`

                                                   `g(x)=(|3x-4|)/10, x∈R.`

(a)  State the range of `f` and of `g`

(b) Find an expression for the composite function `f∘g(x)` in the form `(ax^2+bx+c)/3750,` where `a,b` and `c∈Z`

(c) (i) Find an expression for the inverse function `f^(-1) (x)`

     (ii) State the domain and range of `f^(-1)`

The domains of `f` and `g` are now restricted to `{0,1,2,3,4}.`

(d) By considering the values of `f` and `g` on this new domain, determine which of `f` and `g`could be used to find a probability distribution for a discrete random variable `X`, stating your reasons clearly.

(e) Using this probability distribution, calculate the mean of `X`

Mark as Complete

Mark Scheme

More IB Mathematics