IB Mathematics - Questionbank

2.3 Quadratic & Rational Functions

Question 1

The diagram shows part of the graph of `y=a(x-h)^2+k`. The graph has its vertex at `P`, and passes through the point `A` with coordinates `(1,0)`.

(a) Write down the value of

    (i) `h`;

    (ii) `k`.

(b) Calculate the value of `a`.

Mark as Complete

Mark Scheme

Question 2

Consider the following function:

                   `h(x)=2/(sqrt(x-1))+1/2," for " x>1.`

(a) Find `h^(-1) (1)`

(b) Find the domain of `h^(-1) (x)`

Mark as Complete

Mark Scheme

Question 3

The diagram shows part of the graph of the curve `y=a(x-h)^2+k`, where `a,h,k∈Z`

(a) The vertex is at the point `(3,1)`. Write down the value of `h` and of `k`.

(b) The point `P(5,9)` is on the graph. Show that `a=2`.

(c) Hence show that the equation of the curve can be written as `y=2x^2-12x+19.`

(d) (i) Find `dy/dx`

     A tangent is drawn to the curve at `P(5,9)`

     (ii) Calculate the gradient of this tangent.

     (iii) Find the equation of this tangent.

Mark as Complete

Mark Scheme

Question 4

(a) The diagram shows part of the graph of a quadratic function `f(x)=x^2+bx+c`, which intersects the x-axis at `x=2` and at `x=3`

              

      Find the value of `b` and of `c`

(b) The diagram shows part of the graph of another quadratic function `g`. It can be written in the form `g(x)=a(x-h)^2+3`. Its vertex is at `(2,3)` and its y-intercept is `5`.

            

     (i) Write down the value of `h` 

     (ii) Find the value of `a`

Mark as Complete

Mark Scheme

Question 5

The following diagram shows part of the graph of `f`, where `f(x)=x^2-x-2`

            

(a) Find both x-intercepts.

(b) Find the x-coordinate of the vertex.

Mark as Complete

Mark Scheme

Question 6

A function `f` is defined by `f(x)=(2x-1)/(x+1)`, where `x∈R,x≠-1`

(a) The graph of `y=f(x)` has a vertical asymptote and a horizontal asymptote.

      Write down the equation of

     (i) The vertical asymptote;

     (ii) The horizontal asymptote.

(b) On the set of axes below, sketch the graph of `y=f(x)`

     On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

         

(c) Hence, solve the inequality `0<(2x-1)/(x+1)<2`

Mark as Complete

Mark Scheme

Question 7

Let `f(x)=p(x-q)(x-r)`. Part of the graph of `f` is shown below.

       

The graph passes through the points `(-2,0)`, `(0,-4)` and `(4,0)`

(a) Write down the value of `q` and of `r`

(b) Write down the equation of the axis of symmetry.

(c) Find the value of `p`

Mark as Complete

Mark Scheme

Question 8

Let `f(x)=1/2 x^2+kx+8`, where `k∈Z`

(a) Find the values of `k` such that `f(x)=0` has two equal roots.

(b) Each value of `k` is equally likely for `-5≤k≤5`. Find the probability that `f(x)=0` has no roots.

Mark as Complete

Mark Scheme

Question 9

Let `f` be a quadratic function. Part of the graph of `f` is shown below.

     

The vertex is at `P(4,2)` and the `y`-intercept is at `Q(0,6)`

(a) Write down the equation of the axis of symmetry.

The function `f` can be written in the form `f(x)=a(x-h)^2+k`

(b) Write down the value of `h` and  of `k`.

(c) Find `a`

Mark as Complete

Mark Scheme

Question 10

A function `f` is defined by `f(x)=(2(x+3))/(3(x+2))`, where `x∈R,x≠-2`

The graph `y=f(x)` is shown below.

      

(a) Write down the equation of the horizontal asymptote.

Consider `g(x)=mx+1`, where `m∈R,m≠0`

(b) (i) Write down the number of solutions to `f(x)=g(x)` for `m>0`

     (ii) Determine the value of m such that `f(x)=g(x)` has only one solution for `x` 

     (iii) Determine the range of values for `m`, where `f(x)=g(x)` has two solutions for `x≥0`

Mark as Complete

Mark Scheme

More IB Mathematics