A Level Mathematics - Questionbank

Trigonometry

Trigonometry explores the properties and applications of trigonometric functions, including sine, cosine, and tangent. Students study identities, solve equations, and analyze graphs in both degrees and radians. This topic is essential for understanding angles, periodic behavior, and their applications in geometry and advanced mathematics.

Question 1

a. Given that `costheta=4/5` and that `θ` is acute, find the exact value of:

`frac{1-sin^2theta}{costheta}`

`frac{3-sintheta}{3+costheta}`

b. Given that `sintheta=1/4` and that `θ` is acute, find the exact value of:

`frac{sinthetacostheta}{tantheta}`

`1/tantheta+1/sintheta`

Easy

Mark as Complete

Mark Scheme

Question 2

Find the exact value of each of the following:

a. `frac{sin^2 45°}{2+tan60°}`

b. `frac{sin^2 30°+cos^2 30°}{2sin 45°cos 45°}`

c. `1/tan frac{pi}{4}-1/cos frac{pi}{3}`

d. `frac{cos frac{pi}{3}+ tan frac{pi}{6}}{sin frac{pi}{3}}`

Easy

Mark as Complete

Mark Scheme

Question 3

Draw a diagram showing the quadrant in which the rotating line OP lies for each of the following angles. On each diagram, indicate clearly the direction of rotation and state the acute angle that the line OP makes with the x-axis.

a. `-150°`

b. `frac{13pi}{9}`

Easy

Mark as Complete

Mark Scheme

Question 4

Given that `sintheta=2/5` and that `θ` is obtuse, find the value of:

a. `costheta`

b. `tantheta`

Easy

Mark as Complete

Mark Scheme

Question 5

Given that `tantheta=-5/12` and that `180°<=theta<=360°`, find the value of:

a. `sintheta`

b. `costheta`

Easy

Mark as Complete

Mark Scheme

Question 6

a. Sketch the graph of `y=2sinx` for `-pi<=x<=pi`. The straight line `y=kx` intersects this curve at the maximum point. 

b. Find the value of `k`. Give your answer in terms of `pi`

c. State the coordinates of the other points where the line intersects the curve.

Easy

Mark as Complete

Mark Scheme

Question 7

The graph of `y=sinx` is reflected in the line `x=pi` and then in the line `y=1`

Find the equation of the resulting function.

Easy

Mark as Complete

Mark Scheme

Question 8

The function `f(x)=5-2sinx` is defined for the domain `pi/2<=x<=p`.

a. Find the largest value of `p` for which `f` has an inverse.

b. For this value of `p`, find `f^-1(x)` and state the domain of `f^-1`.

Medium

Mark as Complete

Mark Scheme

Question 9

Solve each of these equations for the given domains:

a. `2tan(x/2)+sqrt3=0` for `0°<=x<=540°`.

b. `sqrt2sin(x/3+pi/4)=1` for `0 < x < 4pi`.

Hard

Mark as Complete

Mark Scheme

Question 10

Solve each of these equations for `0 <= x <= 2pi`

a. `4tanx=3cosx`

b. `2cos^2x+5sinx=4`

Medium

Mark as Complete

Mark Scheme

Question 11

a. Given that `a=frac{1-sintheta}{2costheta}`, show that `1/a=frac{2(1+sintheta)}{costheta}`.

b. Hence, find `sintheta` and `costheta` in terms of `a`.

Medium

Mark as Complete

Mark Scheme

Question 12

a. Show that the equation `sinthetatantheta=3` can be written in the form `cos^2theta+3costheta-1=0`.

b. Hence, solve the equation `sinthetatantheta=3` for `0° <= theta <= 360°`.

Medium

Mark as Complete

Mark Scheme

Question 13

a. Prove the identity `frac{1}{1+sintheta}+frac{1}{1-sintheta}-=frac{2}{cos^2theta}`.

b. Hence, solve the equation `costheta(frac{1}{1+sintheta}+frac{1}{1-sintheta})=5` for `0° <= theta <= 360°`.

Medium

Mark as Complete

Mark Scheme

Question 14

a. Prove the identity `cos^4theta-sin^4theta-=2cos^2theta-1`.

b. Hence, solve the equation `cos^4theta-sin^4theta=1/2` for `0° <= theta <= 360°`.

Medium

Mark as Complete

Mark Scheme

Question 15

a. Show that the equation `frac{tanx+cosx}{tanx-cosx}=k`, where `k` is a constant, can be expressed as `(k+1)sin^2x+(k-1)sinx-(k+1)=0`.

b. Hence solve the equation `frac{tanx+cosx}{tanx-cosx}=4` for `0° <= x <= 360°`.

Hard

Mark as Complete

Mark Scheme

Question 16

a. Prove the identity `frac{1+sinx}{1-sinx}-frac{1-sinx}{1+sinx}-=frac{4tanx}{cosx}`.

b. Hence solve the equation `frac{1+sinx}{1-sinx}-frac{1-sinx}{1+sinx}=8tanx` for `0 <= x <= 1/2 pi`.

Hard

Mark as Complete

Mark Scheme

Question 17

a. Prove the identity `frac{1-2sin^2theta}{1-sin^2theta}-=1-tan^2theta`.

b. Hence solve the equation `frac{1-2sin^2theta}{1-sin^2theta}=2tan^4theta` for `0° <= theta <= 180°`.

Medium

Mark as Complete

Mark Scheme

Question 18

a. Show that `frac{sintheta+2costheta}{costheta-2sintheta}-frac{sintheta-2costheta}{costheta+2sintheta}=frac{4}{5cos^2theta-4}`.

b. Hence solve the equation `frac{sintheta+2costheta}{costheta-2sintheta}-frac{sintheta-2costheta}{costheta+2sintheta}=5` for `0° < theta < 180°`.

Hard

Mark as Complete

Mark Scheme

Question 19

a. Prove the identity `frac{sin^3theta}{sintheta-1}-frac{sin^2theta}{1+sintheta}-=-tan^2theta(1+sin^2theta)`.

b. Hence solve the equation `frac{sin^3theta}{sintheta-1}-frac{sin^2theta}{1+sintheta}=tan^2theta(1-sin^2theta)` for `0 < theta < 2pi`.

Hard

Mark as Complete

Mark Scheme

Question 20

a. (i) By first expanding `(costheta+sintheta)^2`, find the three solutions of the equation `(costheta+sintheta)^2=1` for `0 <= theta <= pi`.

(ii) Hence verify that the only solutions of the equation `costheta+sintheta=1` for are `0` and for `1/2pi`.

b. Prove the identity `frac{sintheta}{costheta+sintheta}+frac{1-costheta}{costheta-sintheta}-=frac{costheta+sintheta-1}{1-2sin^2theta}`.

c. Using the results of (a) (ii) and (b), solve the equation `frac{sintheta}{costheta+sintheta}+frac{1-costheta}{costheta-sintheta}=2(costheta+sintheta-1)` for `0 <= theta <= pi`.

Hard

Mark as Complete

Mark Scheme

More A Level Mathematics