A Level Mathematics - Questionbank

Trigonometry

Trigonometry focuses on advanced trigonometric identities, equations, and their applications in solving problems involving angles and periodic functions.

Question 1

null

The diagram shows part of the curve with equation `y = x^3cos2x`. The curve has a maximum at the point `M`

a. Show that the x-coordinate of M satisfies the equation `x = root(3)(1.5x^2cot2x)`.

b. Use the equation in part (a) to show by calculation that the x-coordinate of `M` lies between `0.59` and `0.6`.

c. Use an iterative formula, based on the equation in part (a), to find the x-coordinate of `M` correct to `3` s.f. Given the result of each iteration to `5` s.f.

Medium

Mark as Complete

Mark Scheme

Question 2

It is given that `3sin2theta= costheta` where `θ` is an angle such that `0^o< theta < 90^o`

a. Find the exact value of `sintheta`.
b. Find the exact value of `sectheta`.
c. Find the exact value of `cos2theta`

Easy

Mark as Complete

Mark Scheme

Question 3

Solve the equation `7cottheta = 3"cosec"theta` for `0^o < theta < 90^o`.

Medium

Mark as Complete

Mark Scheme

Question 4

Solve the equation 

`sec^2theta + tan^2theta = 5tantheta + 4` for `0^o< theta < 180^o`.

Medium

Mark as Complete

Mark Scheme

Question 5

i. Show that `2"cosec"2thetacottheta -= "cosec"^2theta`.

ii. Solve the equation `2 "cosec" phi cot frac{1}{2}phi + "cosec"1/2phi = 12` for `-360^o < phi < 360^o`. Show all necessary working.

Medium

Mark as Complete

Mark Scheme

Question 6

a)

i. Express `4sin theta + 4 cos theta` in the form `Rsin( theta+a )`, where `R > 0` and `0^o < alpha < 90^o`.

ii. Hence find the smallest positive value of `theta` satisfying the equation `4sintheta + 4costheta = 5`.

b) Solve the equation `4cot2x = 5 + tanx` for `0 < x < pi`, showing all necessary working and giving the answers correct to `2` decimal places.

Medium

Mark as Complete

Mark Scheme

Question 7

a. Showing all necessary working, solve the equation `secalpha"cosec"alpha = 7` for `0^o < alpha < 90^o`

b. Showing all necessary working, solve the equation `sin(beta + 20^o) + sin(beta - 20^o) = 6cosbeta` for `0^o < beta < 90^o`.

Easy

Mark as Complete

Mark Scheme

Question 8

i. Express `0.`theta`5costheta - 1.2sintheta` in the form `Rcos(theta+alpha )`, where `R > 0` and  `0^o< alpha < 90^o`, giving the value of `alpha` correct to `2` decimal places. 

ii. Hence solve the equation `0.5costheta – 1.2sintheta = 0.8` for `0^o< theta < 360^o`.

iii. Determine the greatest and least possible values of `(3 - costheta + 2.4sintheta)^2` as  varies.

Easy

Mark as Complete

Mark Scheme

Question 9

Solve the equation `sec^2theta = 3 "cosec"theta` for `0^o< theta < 180^o`.

Easy

Mark as Complete

Mark Scheme

Question 10

i. Use the factor theorem to show that `(2x +3)` is a factor of `8x^3 + 4x^2 - 10x + 3`.

ii. Show that the equation `2cos2theta = frac{6costheta -5}{2costheta+1}` can be expressed as `8cos^3theta + 4cos^2theta - 10cos + 3 = 0`.

iii. Solve the equation `2cos2theta = frac{6costheta -5}{2costheta+1}` for `0^o< theta < 360^o`.

Medium

Mark as Complete

Mark Scheme

Question 11

i. Given that `tan2thetacottheta = 8`, show that `tan^2theta = 3/4`.

ii. Hence solve the equation `tan2thetacottheta = 8` for `0^o< theta < 180^o`.

Easy

Mark as Complete

Mark Scheme

Question 12

i. Express `2costheta + (sqrt5)sintheta` in the form `Rcos( theta - alpha )` where `R > 0` and `0^o< theta < 90^o`, giving the value of `alpha` correct to `2` decimal places.

ii. Hence solve the equation `2costheta + (sqrt5)sintheta =1` for `0^o.

Medium

Mark as Complete

Mark Scheme

Question 13

Solve the equation `5costheta(1 + cos2theta) = 4` for `0^o<= theta <= 360^o`.

Easy

Mark as Complete

Mark Scheme

Question 14

Solve the equation `5tan2theta = 4cottheta` for `0^o.

Easy

Mark as Complete

Mark Scheme

Question 15

i.Show that `sin(theta + 60^o) + sin(theta + 120^o) -= sqrt3costheta`.

ii.Hence 

a. Find the exact value of `sin105^o + sin165^o`.

b. Solve the equation `sin(theta + 60^o) + sin(theta + 120^o) = sectheta` for `0^o <= theta <= 180^o`.

Medium

Mark as Complete

Mark Scheme

Question 16

The polynomial `p(x)` is defined by 

`p(x) = ax^3 + 3x^2 + bx + 12`

where `a` and `b` are constants. It is given that `(x+3)` is a factor of `p(x)`. It is also given that the remainder is `18` when `p(x)` is divided by `(x+2)`.

i.Find the values of `a` and `b` 

ii. When `a` and `b` have these values, 

Show that the equation `p(x) = 0` has exactly one real root.

b. Solve the equation `p(secy) = 0` for `-180^o< theta < 180^o`.

Hard

Mark as Complete

Mark Scheme

Question 17

null

The diagram shows the curve with parametric equations `x = 4sintheta`,`y = 1 + 3cos(theta + pi/6)` for `0<= theta < 2pi`

i.Show that `(dy)/(dx)` can be expressed in the form `k(1 + sqrt3tantheta)` where the exact value of k is to be determined. 

ii. Find the equation of the normal to the curve at the point where the curve crosses the positive y – axis. Give your answer in the form `y = mx + c`, where the constants `m` and `c` are exact.

Hard

Mark as Complete

Mark Scheme

Question 18

i. Express `sin2theta(3sectheta + 4"cosec" θ)` in the form `asin theta + bcostheta`, where `a` and `b` integers.

ii. Hence express `sin2theta(3sectheta + 4"cosec" θ)` in the form `Rsin(theta + alpha)` where `R > 0` and `0^o< theta < 90^o`.

iii. Using the result of part (ii), solve the equation `sin2theta(3sectheta + 4"cosec" θ) = 7` for `0^o <= theta <= 360^o`.

Medium

Mark as Complete

Mark Scheme

Question 19

It is given that `theta` is an acute angle measured in degrees such that 

`2sec^2theta + 3tantheta = 22`

i.Find the value of `tantheta`,

ii. Use an appropriate formula to find the exact value of `tan(theta + 135^o)`.

Easy

Mark as Complete

Mark Scheme

Question 20

i. Express `8sintheta 15costheta` in the form `Rsin(theta + alpha)`, where `R > 0` and `0^o< alpha < 90^o`. Given that value of `alpha` correct to `2` decimal places.
ii. Hence solve the equation `8sintheta + 15costheta = 6` for `0^o <= theta <= 360^o`.

Easy

Mark as Complete

Mark Scheme

More A Level Mathematics